
Browser Bug
Hunting and

Mobile

About us

COSEINC

Formerly Red Hat Product Security

Fedora Security Team

iOS Mobile Security

OSS Security

Francisco Alonso

Senior security researcher

rs@revskills.cz

@revskills

COSEINC

Focused on Linux Kernel

radare2 evangelist

r2pipe node mantainer

Whiskey Con Superstar

Jaime Peñalba

Senior security researcher

jpenalba@member.fsf.org

@NighterMan

mailto:rs@revskills.cz
mailto:rs@revskills.cz
mailto:jpenalba@member.fsf.org
mailto:jpenalba@member.fsf.org

Motivations

Agenda
Browser Bug Hunting and Mobile

Public vulnerability statistics and notes

Mitigations

Memory Instrumentation

Code Coverage

Fuzzing strategies

Triage

Conclusions

Questions

Motivations
Browser Bug Hunting and Mobile

•Mobile PWN0RAMA, Pwn2Own, PWNFEST contests

•Coordinated Responsible disclosure

•Public Bug bounty programs

•0day Market

• It's funny, Increasingly complicated and a competitive world

•Pop all the calcs!

Motivations
Browser Bug Hunting and Mobile

independent broker-dealers

Public vulnerability statistics
Browser Bug Hunting and Mobile

•Mozilla:

• ~14,045,424 LOC. C++,C, JavaScript, Rust..

•3.528 Commits, 373 Contributors, 30 days.

•Chromium (Google Chrome)

•~14,941,151 LOC. C++, C..

•6809 Commits, 817 Contributors, 30 days

•WebKit

•~8,398,258 LOC. C++

•1214 Commits, 76 Contributors, 30 days

Public vulnerability statistics
Browser Bug Hunting and Mobile

0

27.5

55

82.5

110

137.5

Firefox and ESR Chromium

Critical High Moderate Low

2016 (January - October/November, Aprox)

Public vulnerability statistics
Browser Bug Hunting and Mobile

•Chromium : Most bugs reported (even if they use the same CVE identifier come from internal audits)

•Cross third party libraries common bugs: Begin to be uncommon, become more robust. Eg:

• libpng

• jpeglib

•Many bugs stuck in bugzilla for months

•Lots of bugs reported to Mozilla by Chromium Product Security

•Lots of bugs reported to WebKit by Chromium Product Security

•Several Blink commiters maintains WebKit too

•Lack of information intentionally, private bug reports, diff required

•CVE-2016-5200: Out of bounds memory access in V8

•CVE-2016-4657: A memory corruption issue was addressed through improved memory handling (NSO)

•Backporting is a mess, Linux distributions rebase Chrome and Firefox

Public vulnerability statistics
ClusterFuzz Fuzzing at Scale

•App Engine Google Cloud Platform (Fronted)

•Windows, Linux VMs

•Google Chrome lab (Backend)

•Android and iOS devices, macOS Servers, GPU Linux

•> 5.000 24x7 CPU cores

•> 5.000 bugs in Chromium, >1.200 bugs in ffmpeg

•Hundreds of custom fuzzers testing different APIs

•Several Teams working on different fuzzers (libFuzzer, afl/afl_driver, etc)

•Blink - Webkit

Public vulnerability statistics
Mozilla Fuzzing at Scale

•Amazon EC2 VMs

• No public information about VMs/Cores

•Funfuzz: jsfunfuzz and DOMFuzz

•FuzzManager: A fuzzing management tools collection

•CrashManager

•Laniakea: tool for managing EC2 instances at AWS

•Quokka: launch and monitor application for faults

•Dharma: generation-based, context-free grammar fuzzer

•Faulty: fuzzing IPC Protocol Definition Language (IPDL) protocols

• fuzzdata: resources for feeding various fuzzers with input

•Framboise: in-depth testing of WebAPIs (WebVTT, Canvas2D,etc)

Mitigations
Evolution

•VTGuard

•ForceASLR

•AppContainer

•Pool Integrity Checks

•Kernel ASLR

•EMET

•PartitionAlloc

•Java Click-to-Play

•Control Flow Guard

• Isolated Heap

•Memory Protection

•Win32k Access Prevention

•Adobe Flash Isolated Heap

•Adobe Flash Memory Protections

Source: Zero Day Initiative Research

•Hardened JIT Mapping

• iOS Sandbox Hardening

• iPhone 7 New protections

Compromise Render (WebKit/Blink) via HTML, DOM, CSS,

SVG, Canvas, JavaScript Engine (JavaScriptCore, v8)

Mitigations

B

S

B

P

Code execution, cookie leak

Sandbox

Code execution out of sandbox, Data Leakage, IPC

Sandbox Bypass

Kernel, persistence

Privilege Escalation

Browser

Typical Exploit-Chain

Mitigations
 inter-process communication (IPC) basic rules

•Trust only the browser process

•Do not trust renderer, PPAPI (Pepper API, Flash), or GPU processes

•Sanitize and validate untrustworthy input. Directory traversal attacks, file theft.

•Android: integer types across C++ and Java (safe conversions)

• Information leak of addresses/pointers over the IPC channel (Don't defeat ASLR)

Memory Instrumentation
Not all memory access errors result in crashes

•AddressSanitizer

•ThreadSanitizer

•MemorySanitizer

•UndefinedBehaviorSanitizer

•SyzyASan

•PageHeap

Memory Instrumentation
Not all memory access errors result in crashes

AddressSanitizer (ASan): Fast memory error detector (slowdown 2x).

It consists of a compiler instrumentation module and a run-time library.

The tool can detect the following types of bugs:

•Out-of-bounds accesses to heap, stack and globals

•Use-after-free

•Use-after-return

•Use-after-scope

•Double-free, invalid free

•Memory leaks (LSan)

-fsanitize=address

Memory Instrumentation
Not all memory access errors result in crashes

ThreadSanitizer (TSan): focuses on concurrency issues. Slowdown 5x-15x,

memory overhead 5x-10x

•Data races

•Deadlocks

•Unjoined threads

•C++ and Go

-fsanitize=thread

Memory Instrumentation
Not all memory access errors result in crashes

MemorySanitizer (MSan): focuses on contents of memory. Slowdown 3x

•Uninitialized reads

•Origin Tracking

•Use-after-destruction (experimental)

-fsanitize=memory

Memory Instrumentation
Not all memory access errors result in crashes

UndefinedBehaviorSanitizer (UBSan): detect various kinds of undefined behavior.

•Using misaligned or null pointer

•Signed integer overflow

•Conversion to, from, or between floating-point types which would overflow the destination

•UBSAN_OPTIONS=halt_on_error=1

-fsanitize=undefined

Memory Instrumentation
Not all memory access errors result in crashes

Control Flow Integrity (CFI): detect certain forms of undefined behavior that

can potentially allow to subvert the program's control flow. Optimized for performance

•Different subset of schemes

•Require LTO (link-time optimization)

-fsanitize=cfi

Memory Instrumentation
Not all memory access errors result in crashes

SafeStack: protects against attacks based on stack buffer overflows. Overhead is

less than 0.1%.

•Two distinct regions: safe and unsafe stack

•Part of the Code-Pointer Integrity (CPI) Project

•Some limitations: protection against arbitrary memory write vulnerabilities is probabilistic

and relies on randomization and information hiding.

-fsanitize=safe-stack

Code coverage
coverage at a very low cost.

•SanitizerCoverage: it can be used with ASan, LSan, MSan, and UBSan or without

Allows to get function-level, basic-block-level, and edge-level

-fsanitize-coverage=func for function-level coverage, fast.

-fsanitize-coverage=bb for basic-block-level coverage > to 30%

 extra slowdown

-fsanitize-coverage=edge for edge-level coverage. > 40% slowdown

 Splits all critical edges by introducing new dummy blocks

-fsanitize-coverage=8bit-counters, to get coverage counters,

Memory Instrumentation

•Google (Chromium, Chromium OS, Chrome/Android) and Mozilla provide public daily ASan builds,

• testing and debugging. Use your own builds

• WebKitGTK+ and WebKit are ASan friendly

•JavaScriptCore: asanUnsafeJSValue, CopyMemory

• It is possible to build WebKit iOS with ASan to use on iPhone Simulator (it is basically x86)

•AddressSanitizer it is NOT a mitigation/hardening. Tor Hardened Browser.. You're doing it wrong.

Fuzzing strategies

•The term "fuzz" or "fuzzing" originates from a 1988 class project, taught by Barton Miller

at the University of Wisconsin. —Wikipedia

•Goal: trigger an application crash or unexpected behaviour

•Mutation (dumb fuzzing): mutate existing test samples.

•Shuffle, change, erase, insert

•Generation (smart/intelligent fuzzing): define new test samples based on models,

templates, RFC or documentation

•Web IDL, XML Schemas

Fuzzing strategies
Smart Generation Fuzzing DOM

Mozilla Firefox

Regression bug #1182496

Mitigated by Frame-Poisoning
Every object that is being freed

will be replaced with a chosen pattern.

Implemented in nsPresArena

Incorrect mParent pointer is pointing into

a subtree that's been destroyed.

SVGForeignObjectElement
https://www.w3.org/TR/2011/REC-SVG11-20110816/svg.idl

Fuzzing strategies

Smart Generation

Fuzzing strategies
Smart Generation, Notes

•Generic, valid for several browsers

•Not all meet specifications, MATHML

•Requires a good infrastructure

•Servers

•ASan,UBSan… Builds per Browser

•Monitor , crash Manager (dumps)

•Maintenance

•Fairly expensive to maintain

•Too much can go wrong

Fuzzing strategies

•v8 (Chromium)

•JavaScriptCore (Webkit/Safari)

•SpiderMonkey (Firefox)

ECMAScript Engines

•Redefinition: redefine methods, __defineGetter__, __defineSetter__, __lookupGetter__

•ANTLR ANother Tool for Language Recognition/Esprima tool/acorn.js, generates a parser that

can build and walk parse trees.

•Testsuite, code snippets, converts to AST (Abstract syntax tree)

•Replace nodes

•Shuffle

•Replace Values

•Not random at all, heuristics are better

•Validate them and test against:

Fuzzing strategies
Smart Generation, Notes

•Almost Generic, valid for several ECMA Engines

•ASan,UBSan… Builds per Engine

•Does not require too much infrastructure

•They are quite robust in general

Fuzzing strategies

• It uses LLVM’s SanitizerCoverage instrumentation to get in-process

coverage-feedback

• Integrated with ASan, MSan, UBsan, LSan

•Fast, no overhead at start-up

•Perfect way to start your own fuzzer

•Custom Mutators FuzzerInterface.h

• Different mutators = Different results

•LLVMFuzzerTestOneInput: Function metrics

LibFuzzer

Fuzzing strategies
LibFuzzer & expat example

Fuzzing strategies
LibFuzzer Dictionaries

•Dictionaries FuzzerDictionary.h :

• Automatic

 - Intercepts memcp, strcmp. See FuzzerTracePC.cpp:212

• Manual

 - Token based like XML or magic value like PNG

 - Speed-up fuzzing with valid inputs (avoid large dictionaries)

• ProTip :

 Strip symbols, extract .rodata segment from our binary target, extract strings using different

 encodes and cross references with an rfc, documentation, etc.

Fuzzing strategies
LibFuzzer Notes

•Bad Interaction with multithreaded binaries (8bit counters)

•White/blacklists/"hacks" are needed to avoid "noisy" coverage detection

and improve performance. Like in v8 GC events.

•Not everything is perfect.. but it works great!

Fuzzing strategies
LibFuzzer

json_parser_libfuzzer.cc

moz_ipc_libfuzzer.cc

moz_worker_s_libfuzzer.cc

cairo_surf_libfuzzer.cc

graphite2_libfuzzer.cc

wasm_libfuzzer.cc

regexp_libfuzzer.cc

pdfium_icc2_libfuzzer.cc

skia_binary_in_libfuzzer.cc

skia_api_various_libfuzzer.cc

skia_canvas_libfuzzer.cc

skia_encoder_libfuzzer.cc

skia_path_x_libfuzzer.cc

audio_dec_libfuzzer.cc

audio_enc_libfuzzer.cc

expat_encodes_libfuzzer.cc

libpng_libfuzzer.cc

h264_libfuzzer.cc

gstreamer_s_libfuzzer.cc

freetype_sim_libfuzzer.cc

freetype_optimized_libfuzzer.cc

wof2_libfuzzer.cc

vp8_libfuzzer.cc

vp9_libfuzzer.cc

libvpx_webm_libfuzzer.cc

http_proxy_libfuzzer.cc

file_libfuzzer.cc

libxml2_libfuzzer.cc

cert_various_libfuzzer.cc

gl_s_libfuzzer.cc

jsc_libfuzzer.cc

v8_ast_libfuzzer.cc

0 5 10 15 20 25

2016

Stack-buffer-overflow

Heap-buffers-overflow

Heap-UAF

Others

Integer-overflows

~58 bugs in 30days

> 70 Fuzzers

Not 24x7 HW

Every interesting API in Chromium, Mozilla,

Webkit and APIs from third party libraries

Fuzzing strategies

v8 Nov 20 (3 days ago), Fixed Yesterday

Fuzzing strategies
Components: Blink>Loader

Fuzzing strategies
 IPC componente, sec-high fixed in Mozilla Firefox 47

Triage

•No line numbers: refactoring, versions

•Useful info: registers, dissassembly

•Symbolize: llvm-symbolizer

•Signatures

•Blacklist known bugs, group by.

• Impact

Crash Metadata

Triage

•Delta debugging: trim useless functions, LOC not needed to reproduce the bug.

• lang-based: delete statements, functions and sub-expressions. JSDelta

•Line-based: lithium (Mozilla)

•Algorithm-based: Genetic

•Reducers are Fuzzers: large testcases after being minimized some times

trigger new bugs.

•Bisection: finding the patch or commit that introduced or fix a bug

•Specific versions of a library used, last revision

Minimize & Bisect

Conclusions

•Mobile Lab for testing is required, Mobile provisioning and automate

 testing (Frida helps a lot)

 iPhone devices are expensive, but not logic boards, Happy HW Hacking!

• Focus on Small areas, custom buzzers, custom mutators, custom dict

• Be patient

•Stay informed (mailing list, commits monitor, Future Q plans)

•Bugs are expensive because the work is complex and requires be constant

•Race Conditions in Render Process TODO.txt

•Concolic Fuzzers TODO.txt

Q&A

